Transient and Microscale Deformations and Strains Measured under Exogenous Loading by Noninvasive Magnetic Resonance

نویسندگان

  • Deva D. Chan
  • Corey P. Neu
چکیده

Characterization of spatiotemporal deformation dynamics and material properties requires non-destructive methods to visualize mechanics of materials and biological tissues. Displacement-encoded magnetic resonance imaging (MRI) has emerged as a noninvasive and non-destructive technique used to quantify deformation and strains. However, the techniques are not yet applicable to a broad range of materials and load-bearing tissues. In this paper, we visualize transient and internal material deformation through the novel synchrony of external mechanical loading with rapid displacement-encoded MRI. We achieved deformation measurements in silicone gel materials with a spatial resolution of 100 µm and a temporal resolution (of 2.25 ms), set by the repetition time (TR) of the rapid MRI acquisition. Displacement and strain precisions after smoothing were 11 µm and 0.1%, respectively, approaching cellular length scales. Short (1/2 TR) echo times enabled visualization of in situ deformation in a human tibiofemoral joint, inclusive of multiple variable T(2) biomaterials. Moreover, the MRI acquisitions achieved a fivefold improvement in imaging time over previous technology, setting the stage for mechanical imaging in vivo. Our results provide a general approach for noninvasive and non-destructive measurement, at high spatial and temporal resolution, of the dynamic mechanical response of a broad range of load-bearing materials and biological tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intervertebral disc internal deformation measured by displacements under applied loading with MRI at 3T.

PURPOSE Noninvasive assessment of tissue mechanical behavior could enable insights into tissue function in healthy and diseased conditions and permit the development of effective tissue repair treatments. Measurement of displacements under applied loading with MRI (dualMRI) has the potential for such biomechanical characterization on a clinical MRI system. METHODS dualMRI was translated from ...

متن کامل

Application of an Additive Self-tuning Controller for Static Synchronous Series Compensator for Damping of Sub-synchronous Resonance Oscillations

In this paper, an additive self-tuning (ST) control scheme is presented for a static synchronous series compensator (SSSC) to improve performance of conventional PI control system for damping sub-synchronous resonance (SSR) oscillations. The active and reactve series compensation are provided by a three-level 24-pulse SSSC and fixed capacitor. The proposed ST controller consists of a pole shift...

متن کامل

Testing system for ferromagnetic shape memory microactuators.

Ferromagnetic shape memory alloys are a class of smart materials that exhibit a unique combination of large strains and fast response when exposed to magnetic field. Accordingly, these materials have significant potential in motion generation applications such as microactuators and sensors. This article presents a novel experimental system that measures the dynamic magnetomechanical behavior of...

متن کامل

Analytical determination of the chemical exchange saturation transfer (CEST) contrast in molecular magnetic resonance imaging

Magnetic resonance based on molecular imaging allows tracing contrast agents thereby facilitating early diagnosis of diseases in a non-invasive fashion that enhances the soft tissue with high spatial resolution. Recently, the exchange of protons between the contrast agent and water, known as the chemical exchange saturation transfer (CEST) effect, has been measured by applying a suitable pulse ...

متن کامل

Stress Redistribution Analysis of Piezomagnetic Rotating Thick-Walled Cylinder with Temperature-and Moisture-Dependent Material Properties

In this article, the problem of time-dependent stress redistribution of a piezomagnetic rotating thick-walled cylinder under an axisymmetric hygro-thermo-magneto-electro-mechanical loading is analyzed analytically for the condition of plane strain. Using the constitutive equations, a differential equation is found in which there are creep strains. Primarily, eliminating creep strains, an analyt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012